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Introduction to the Muskat problem

Consider the general transport equation

ρt + u · ∇ρ = 0, x ∈ R2, t ≥ 0.

Here ρ is an “active scalar” which is driven by the
incompressible velocity u:

∇ · u = 0.

This type of system comes up in many contexts in fluid
dynamics and beyond by taking a suitable choice of u.

Vortex Patch Problems
Surface Quasi-geostrophic equation (SQG):

u def
= R⊥ρ = (−R2ρ,R1ρ), R̂j = i

ξj

|ξ|

Muskat Problem (using Darcy’s law.)



Vortex Patch problems

Contour equation: 
ωt + u · ∇ω = 0,

u = ∇⊥∆−1ω,

where the vorticity is given by

ω(x1, x2, t) =

{
ω0, Ω(t)
0, R2 r Ω(t).

Chemin (1993)
Bertozzi & Constantin (1993)



Fluids in porous media and Hele-Shaw cells

The Muskat problem assumes u is given by Darcy’s law:

Darcy’s law:
µ

κ
u = −∇p − g ρen,

u velocity, p pressure, µ viscosity, κ permeability, ρ density, g
acceleration due to gravity and en is the last canonical basis
vector with n = 2, 3.

Widely noted similarity to Hele-Shaw ( Saffman & Taylor (1958) ):

Hele-Shaw:
12µ
b2 u = −∇p − (0, g ρ),

b distance between the plates.

Below we normalize physical constants to one WLOG



Patch problem for IPM: Muskat (1934)

ρt + u · ∇ρ = 0, x ∈ R2, t ≥ 0.

where ρ is the scalar density which is driven by

the incompressible velocity u: ∇ · u = 0.

For the Muskat problem, the velocity satisfies Darcy’s law:

u = −∇p − (0, ρ).

We consider “sharp fronts” (where ρ1 and ρ2 are constants):

ρ =

{
ρ1, x ∈ Ω(t)
ρ2, x ∈ R2 \ Ω(t),

For the transport equation, initial data of this form propagate
this structure forward in time, where Ω(t) is a moving domain.



Contour equation

In this situation, the interphase ∂Ω(t) is a free boundary:

∂Ω(t) = {z(α, t) = (z1(α, t), z2(α, t)), α ∈ R} .

For the Muskat problem we obtain the Contour equation:

zt (α) =
ρ2 − ρ1

2π
PV

∫
R

(z1(α)− z1(β))

|z(α)− z(β)|2
(∂αz2(α)− ∂αz2(β)) dβ.

We characterize the free boundary as a graph (α, f (α, t)):

Ω(t) =
{

(x1, x2) ∈ R2 : x2 > f (x1, t)
}
.

This structure is preserved and f (α, t) satisfies the equation

ft (α, t) =
ρ2 − ρ1

2π
PV

∫
R

dβ
(∂αf (α, t)− ∂αf (α− β, t))α

α2 + (f (α, t)− f (α− β, t))2 .



Some Fundamental Questions for Muskat

Existence of front type solutions? Siegel M, Caflisch R,
Howison S (2004); Escher J, Matioc BV (2011); Constantin
P, Córdoba D, Gancedo F, S. (2013); Beck T, Sosoe P,
Wong P (2014); Constantin, Córdoba, Gancedo, S,
Rodríguez-Piazza (2015); Constantin, Gancedo, Shvydkoy,
Vicol (Preprint 2016), Deng, Lei, Lin (Preprint 2016)...
Possible singularity formation for scenarios with large initial
data?
Castro A, Córdoba D, Fefferman C, Gancedo F,
Lopez-Fernandez M (2012); Castro A, Córdoba D,
Fefferman C, Gancedo F (2013), Coutand-Shkoller
(2015)...



Additional (incomplete collection of) References
Constantin P, Majda AJ, Tabak E (1994); Held I, Pierrehumbert R, Garner S,
Swanson K (1995); Constantin P, Nie Q, Schorghofer N (1998); Gill AE
(1982); Majda AJ, Bertozzi A (2002); Ohkitani K, Yamada M (1997); Córdoba
D (1998); Córdoba D, Fefferman D (2002); Deng J, Hou TY, Li R, Yu X
(2006); Chae D, Constantin P, Wu J (2012); Constantin P, Lai MC, Sharma R,
Tseng YH, Wu J (2012); Rodrigo JL (2005); Gancedo F (2008); Bertozzi AL,
Constantin P (1993); Fefferman C, Rodrigo JL (2011); Córdoba D, Fontelos
MA, Mancho AM, Rodrigo JL (2005); Fefferman C, Rodrigo JL (2012); Otto F
(1999); Córdoba D, Gancedo F Orive R (2007); Székelyhidi L, Jr (2012);
Castro A, Córdoba D, Fefferman C, Gancedo F, López-Fernández M (2012);
Muskat M (1934); Saffman PG, Taylor G (1958); Siegel M, Caflisch R,
Howison S (2004); Escher J, Matioc BV (2011); Córdoba D, Gancedo F
(2007); Ambrose DM (2004); Córdoba A, Córdoba D, Gancedo F (2011);
Lannes D (2013); Constantin P, Córdoba D, Gancedo F, Strain RM (2013);
Beck T, Sosoe P, Wong P (2014); Castro A, Córdoba D, Fefferman C,
Gancedo F (2013); Wu S (1997); Wu S (2009); Ionescu AD, Pusateri F
(2013); Alazard T, Delort JM (2013); Castro A, Córdoba D, Fefferman C,
Gancedo F, Gómez-Serrano J (2012); Castro A, Córdoba D, Fefferman D,
Gancedo F, Gómez-Serrano J. (2014); C. Fefferman, A. Ionescu and V. Lie
(2014); Coutand D, Shkoller S (2013); Córdoba D, Gancedo F (2010); Escher
J, Matioc AV, Matioc BV (2012); Constantin A, Escher J (1998); Córdoba A,
Córdoba D (2003); Constantin, Gancedo, Shvydkoy, Vicol (Preprint 2016)...



The linearized equation

This equation for f can be linearized around the flat solution:

f L
t (α, t) = −ρ

2 − ρ1

2
Λ(f L)(α, t), Λ = (−∆)1/2.

The linearized equation can be solved by Fourier transform:

f̂ L(ξ) = f̂0(ξ) exp
(
− ρ2 − ρ1

2
|ξ|t
)
.

ρ2 > ρ1 stable case, we have well-posedness.
ρ2 < ρ1 unstable case, we have ill-posedness.
See Ambrose (2004), Córdoba & Gancedo (2007), ...
Also we have the L2 evolution for the linear equation:

d
dt
‖f L‖2L2(t) = −ρ

2−ρ1

π

∫
R

∫
R

( f L(α, t)−f L(β, t)
α− β

)2
dαdβdt .

This is a smoothing estimate. Similar in 3D.



Smoothing for the non-linear equation?

ft (α, t) =
ρ2 − ρ1

2π
PV

∫
R

dβ
(∂αf (α, t)− ∂αf (α− β, t))β

β2 + (f (α, t)− f (α− β, t))2 .

Satisfies L2 maximum principle:

d
dt
‖f‖2L2(t) = −ρ

2−ρ1

π

∫
R

∫
R

ln
(

1+
( f (α, t)−f (β, t)

α− β

)2)
dαdβ

For which it is possible to bound as follows:

∫
R

∫
R

ln
(

1+
( f (α, t)−f (β, t)

α− β

)2)
dαdβ ≤ 4π

√
2‖f‖L1(t).

Don’t see a non-linear smoothing effect at the level of f in L2.
See P. Constantin, D. Córdoba, F. Gancedo - S. (2013).
Also a similar “no-smoothing” statement also in 3D.



Global-existence results for the stable case

In 2D:

ft (α, t) =
ρ2−ρ1

2π
PV

∫
R

β(∂αf (α, t)− ∂αf (α− β, t))

β2 + (f (α, t)− f (α− β, t))2 dβ,

f (α,0) = f0(α), α ∈ R.

In 3D:

ft (x , t) =
ρ2−ρ1

2π
PV

∫
R2

(∇f (x , t)−∇f (x − y , t)) · y
[|y |2 + (f (x , t)− f (x − y , t))2]3/2 dy ,

f (x ,0) = f0(x), x ∈ R2.

We suppose that ρ2 > ρ1



Crucial norm: ‖f‖s =

∫
|ξ|s |̂f (ξ)|dξ, s ≥ 0.

Let f be a solution to the Muskat problem in 3D (d = 2), or in
2D (d = 1) with initial data f0 ∈ H l(Rd ) some l ≥ 1 + d .

Theorem (Constantin-Córdoba-Gancedo- Rodríguez-Piazza- S)

In 2D (d = 1) we suppose for some 0 < δ < 1 that

‖f0‖1 ≤ c0, 2
∑
n≥1

(2n + 1)1+δc2n
0 ≤ 1, c0 ≥

1
3

In 3D (d = 2) we suppose for some 0 < δ < 1 that

‖f0‖1 ≤ k0, π
∑
n≥1

(2n + 1)1+δ (2n + 1)!

(2nn!)2 k2n
0 ≤ 1, k0 ≥

1
5
.

Then there is a unique Muskat solution with initial data f0 that
satisfies f ∈ C([0,T ]; H l(Rd )) for any T > 0.



A few recent papers

Constantin, Gancedo, Shvydkoy, Vicol (Preprint 2016):
Local well posedness for initial data with finite slope.
Global well posedness for initial data with very small slope:

f0 ∈ L2(R), f ′′0 ∈ Lp(R),1 < p ≤ ∞, ‖f ′0‖L∞ � 1

Matioc (Preprint 2016): Well posedness 2D (d = 1) for
initial data f0 ∈ H l(R) for l ∈ (3/2,2). (with surface tension
for l ∈ (2,3).)
( One may combine this with all the previously mentioned
results to get a slightly lower regularity initial data.)

Tofts (Preprint 2016): Well posedness in 2D (d = 1) with
surface tension, including global unique solutions for small
data. Building on previous local well posedness work of
Ambrose 2014

R. Strain On the Muskat problem



Ideas from the proof ...

We set ρ2 − ρ1 = 2 WLOG and we only discuss the 2D case.
One can show the following differential inequality:

d
dt
‖f‖2H l ≤ CP(‖∇f‖L∞)|∇2f |Cδ‖f‖2H l .

Our goal will be to uniformly in time bound ‖f (t)‖H l

We can further expand out the non-linear problem as

ft = −Λ(f )− N(f ),

where

N(f ) =
1
π

∫
R

∂αf (α)− ∂αf (α− β)

β

( f (α)−f (α−β)
β

)2

1 +
( f (α)−f (α−β)

β

)2 dβ.

Then by a Taylor expansion we have

N(f ) =
1
π

∑
n≥1

(−1)n
∫
R

∂αf (α)− ∂αf (α− β)

β

( f (α)− f (α− β)

β

)2n
dβ.



... Ideas from the proof ...

We have the following differential inequality

d
dt
‖f‖1(t) ≤− ‖f‖2(t) +

∫
dξ |ξ||F(N)(ξ)|,

And our goal is to understand the non-linear term.
Using the Taylor expansion we can prove the bound∫

|ξ||F(N)(ξ)|dξ ≤ 2‖f‖2(t)
∑
n≥1

(2n + 1)‖f‖2n
1 (t),

Then for ‖f0‖1 sufficiently small we get the uniform estimate

‖f‖1(t) ≤ ‖f0‖1.

Similarly for 0 < δ < 1 we can show that∫
|ξ|1+δ|F(N)(ξ)|dξ ≤ 2‖f‖2+δ(t)

∑
n≥1

(2n + 1)1+δ‖f‖2n
1 (t).



... Ideas from the proof.

We use the inquality for some 0 < µ < 1

1 > 2
∑
n≥1

(2n+1)1+δ‖f0‖2n
1 = 1−µ ≥ 2

∑
n≥1

(2n+1)1+δ‖f‖2n
1 (t),

To establish that∫
|ξ|1+δ|F(N)(ξ)|dξ ≤ (1− µ)‖f‖2+δ(t),

This proves the following differential inequality
d
dt
‖f‖1+δ(t) ≤ −µ‖f‖2+δ(t),

Or alternatively

‖f‖1+δ(t) + µ

∫ t

0
ds ‖f‖2+δ(s) ≤ ‖f0‖1+δ,

Then we finally obtain our desired uniform in time bound:

‖f‖H l (t) ≤ ‖f0‖H l exp(CP(c0)

∫ t

0
‖f‖2+δ(s)ds).



3. Large time Decay for the Muskat problem

To study the large time decay, the choice of good Functional
spaces is essential.

We use the s-norm for s > −d (d = 1 or d = 2)

‖f‖s
def
=

∫
Rd
|ξ|s |̂f (ξ)| dξ

For s = −d (and s ≥ −d) define the Besov-type s-norm:

‖f‖s,∞
def
=
∥∥∥∫

Cj

|ξ|s |̂f (ξ)| dξ
∥∥∥

l∞j
= sup

j∈Z

∫
Cj

|ξ|s |̂f (ξ)| dξ,

where Cj = {ξ ∈ Rd : 2j−1 ≤ |ξ| < 2j}.
Note that we have the inequality

‖f‖s,∞ ≤
∫
Rd
|ξ|s |̂f (ξ)| dξ = ‖f‖s.

Also have that ‖f‖−d/p,∞ . ‖f‖Lp(Rd ) for p ∈ [1,2]



Optimal Linear Decay Rate

f L
t (α, t) = −Λ(f L)(α, t), Λ = (−∆)1/2, f L(α, t) = etΛf0.

Can be solved by Fourier transform:

f̂ L(ξ, t) = f̂0(ξ) exp
(
− ρ2 − ρ1

2
|ξ|t
)
.

If f0(x) a tempered distribution vanishing at infinity and
satisfying ‖f0‖ν,∞ <∞, then can be shown that

‖f0‖ν,∞ ≈
∥∥∥ts−ν

∥∥∥etΛf0
∥∥∥

s

∥∥∥
L∞

t ((0,∞))
, for any s ≥ ν.

Equivalence above implies the optimal time decay rate∥∥∥etΛf0
∥∥∥

s
≈ t−s+νC(‖f0‖ν,∞), for any s > ν.



Theorem (Patel-S 2016)
Let f be a solution to the non-linear Muskat problem in 3D
(d = 2), or in 2D (d = 1), given by the previous theorems.
The initial data satisfies f0 ∈ H l(Rd ) some l ≥ 1 + d.

For −d < s < l − 1, we have the uniform in time estimate

‖f‖s(t) . 1. (1)

For 0 ≤ s < l − 1 have the uniform in time decay estimate

‖f‖s(t) ≤ C(‖f0‖ν,∞)(1 + t)−s+ν , (2)

where we allow ν to satisfy −d ≤ ν < s.

Corollary (Patel-S 2016)
For 0 ≤ s < l − 1 we have the uniform time decay estimate

‖f‖Ẇ s,∞(t) . C(‖f0‖ν,∞)(1 + t)−s+ν , (−d ≤ ν < s)



A few previous results on bounds and large time decay

Córdoba-Gancedo (2009):
Maximum principle: ‖f‖L∞(t) ≤ ‖f0‖L∞ .
Also optimal time decay rate:

‖f‖L∞(Rd )(t) ≤
‖f0‖L∞(Rd )(

1 + C(‖f0‖L∞(Rd ), ‖f0‖L1(Rd ))t
)d

Constantin, Gancedo, Shvydkoy, Vicol (Preprint 2016):
Time decay rate in 2D:

‖f ′′‖L∞(R)(t) ≤
‖f ′′0 ‖L∞(R)

1 + C(‖f ′′0 ‖L∞(R), ‖f ′0‖L∞(R))t

Constantin, Córdoba, Gancedo, Rodriguez-Piazza, S
(2015):

‖∇f0‖L∞(R2) < 1/3 then the solution with initial data f0
satisfies the uniform in time bound ‖∇f‖L∞(R2)(t) < 1/3.

Constantin, Córdoba-Gancedo, S (2013):
‖∇f0‖L∞(R) < 1 then ‖∇f‖L∞(R)(t) < 1.



Some useful Functional Inequalities

For s > −d
p and r > s + d/q and p,q ∈ [1,2] we have

‖f‖s . ‖f‖1−θLp(Rd )
‖f‖θẆ r,q(Rd )

, θ =
s + d/p

r + d
(

1
p −

1
q

) ∈ (0,1)

For s = −d
p and p ∈ [1,2] we further

‖f‖s,∞ . ‖f‖Lp(Rd ) (includes s = −d and p = 1)

For s > −d
2 these imply

‖f‖s . ‖f‖H r (Rd ) (r > s + d/2).

For 1 ≤ p ≤ 2, r > s + d
p and s > −d

p , we also conclude

‖f‖s . ‖f‖W r,p(Rd ).



Idea’s of the Proof

Two main steps:

Lemma (Step 1: General Decay Lemma)

For some µ ∈ R, ‖g0‖µ <∞ and ‖g(t)‖ν,∞ ≤ C0 for some
ν ≥ −d satisfying ν < µ. Differential inequality holds for C > 0:

d
dt
‖g‖µ ≤ −C‖g‖µ+1.

Then we have the uniform in time estimate

‖g‖µ(t) . (1 + t)−µ+ν .

Lemma (Step 2: Prove uniform in time bounds using Step 1)

‖f‖s . 1, (−d < s < 2)

and prove ‖f‖s,∞ . 1 for −d ≤ s < 2 including s = −d.



Overview of the proof of Step 2

We have a unform bound on H3 from:

‖f‖H3(R2)(t) ≤ ‖f0‖H3(R2) exp(CP(k0)‖f0‖1+δ/µ). (3)

Embeddings grant uniform bound on ‖f‖s(t):

‖f‖s(t) . ‖f‖H3(t) . 1, (−1 < s < 2).

Previous bound plus the decay lemma gives us time decay:

‖f‖s . (1 + t)−s+ν , −1 < ν < s, 0 ≤ s ≤ 1.

Prove a weaker inequality to obtain stronger bounds

d
dt
‖f‖s(t) . ‖f‖1, −2 < s < −1.

Use the time decay of ‖f‖1(t) . (1 + t)−1−ε to prove

‖f‖s(t) . 1, −2 < s ≤ −1.



4. The Multi-Phase Muskat Problem

ρ(x , t) =


ρ1, x ∈ {x2 > f (x1, t)},
ρ2, x ∈ {f (x1, t) > x2 > g(x1, t)},
ρ3, x ∈ {g(x1, t) > x2},

Stable Situation: ρ1 < ρ2 < ρ3.The equations of motion are

ft (α, t) =ρ32
∫
R

β(∂αf (α)− ∂αf (α− β))

β2 + (f (α)− f (α− β))2 dβ

+ ρ21
∫
R

β(∂αf (α)− ∂αg(α− β))

β2 + (f (α)− g(α− β))2 dβ,

gt (α, t) =ρ21
∫
R

β(∂αg(α)− ∂αg(α− β))

β2 + (g(α)− g(α− β))2 dβ

+ ρ32
∫
R

β(∂αg(α)− ∂αf (α− β))

β2 + (g(α)− f (α− β))2 dβ.

where ρji = ρj−ρi

2π for i , j = 1,2,3. These are derived similarly.



4. Absence of singularities for Multi-Phase Muskat

splat or squirt singularity: the free boundary intersects on a
surface. Then a positive volume of the fluid between the
interphases would be ejected in finite time.

Ruled out in Cordoba-Gancedo (2010).
They prove that d

dt VolΩ(t) ≥ 0 where Ω(t) is roughly the
region between the interfaces.
splash singularity: the free boundary intersects at a single
point.

Ruled out in Gancedo-S (2014) stated below.
(See also recent related work on free boundary Euler by
Fefferman-Ionescu-Lie (2015) and Coutand-Shkoller
(2015).)

R. Strain On the Muskat problem



Suppose: limα→∞ f (α, t) = f∞ > g∞ = limα→∞ g(α, t).

Theorem (Gancedo-S. (2014) )

Suppose the free boundaries f (α, t) and g(α, t) are smooth for
α ∈ R and t ∈ [0,T ) with T > 0 arbitrary. Define the distance:

0 < S(t) = min
α∈R

(f (α, t)− g(α, t))� min{f∞ − g∞,1}. (4)

Then the following uniform lower bound for t ∈ [0,T ) holds:

S(t) ≥ exp
(

ln(S(0)) exp
(∫ t

0
C(f ,g)(s)ds

))
. (5)

Here C(f ,g) is a smooth function of ‖f ′′‖L∞ + ‖g′′‖L∞ and
‖f‖L∞ + ‖g‖L∞ . And of course ln(S(0)) < 0.

More generally we have a unified method to establish the
absence of splash singularities for these types of systems in
different scenarios. In particular, an analogous theorem also
holds for SQG sharp fronts.



Verification of some Numerical Evidence

Córdoba D, Fontelos MA, Mancho AM, Rodrigo JL (2005)
observed that computer solutions of the SQG sharp front
system exhibit pointwise collapse and the curvature
blows-up at the same finite time.
We prove that in order to have a pointwise collapse, the
second derivative, and therefore the curvature, has to
blow-up.



Idea’s of the Proof

We observe that the minimum is attained a.e.

S(t) = minα (f (α, t)− g(α, t)) = f (αt , t)− g(αt , t),

Crucial identity for smooth solutions:

∂αf (αt , t) = ∂αg(αt , t).

We plug this identity into the equation

St (t) =

∫
|β|<S(t)

dβ +

∫
S(t)<|β|<1

dβ +

∫
|β|>1

dβ

= I + II + III.

Naturally: I + III ≤ CS(t).



Idea’s of the Proof Cont...

Recall St (t) = I + II + III where I + III ≤ CS(t).
We further split II = ρ21II1 + ρ32II2 where for instance

II1 =

∫
S(t)<|β|<1

dβ
βδβf ′(αt )[(δβ(g, f )(αt ))2 − (δβf (αt ))2]

D(g, f , β)
,

δβ(f ,g)(α) = f (α)− g(α− β) and δβf (α) = δβ(f , f )(α)

D(g, f , β)
def
= [β2 + (δβf (αt ))2][β2 + (δβ(g, f )(αt ))2].

Using the previous identities after a lengthy calculation we
find subtle hidden non-intuitive cancellation:

II1 =−
∫

S(t)<|β|<1

βδβf ′(αt )S(t)δβ(g, f )(αt )

D(g, f , β)
dβ

−
∫

S(t)<|β|<1

βδβf ′(αt )S(t)δβf (αt )

D(g, f , β)
dβ,

Thus II ≤ −CS(t) ln S(t).
Therefore: St (t) ≥ −C(f ,g)S(t) ln S(t). Q.E.D.
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